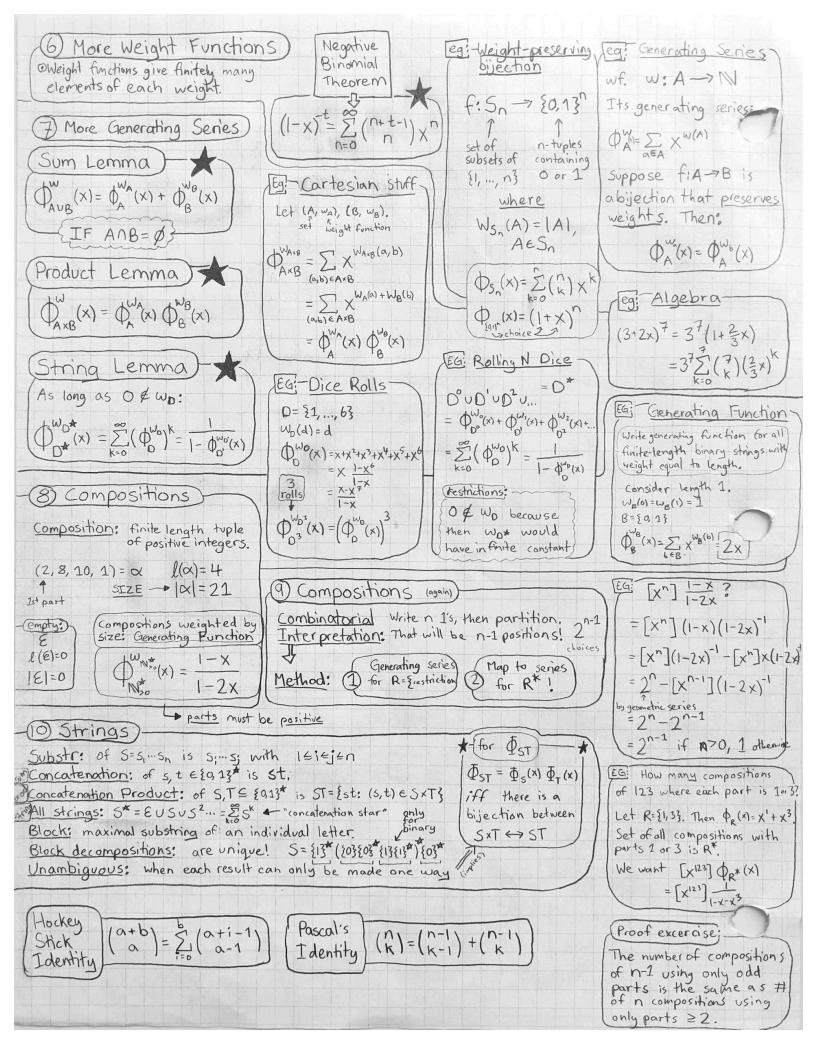
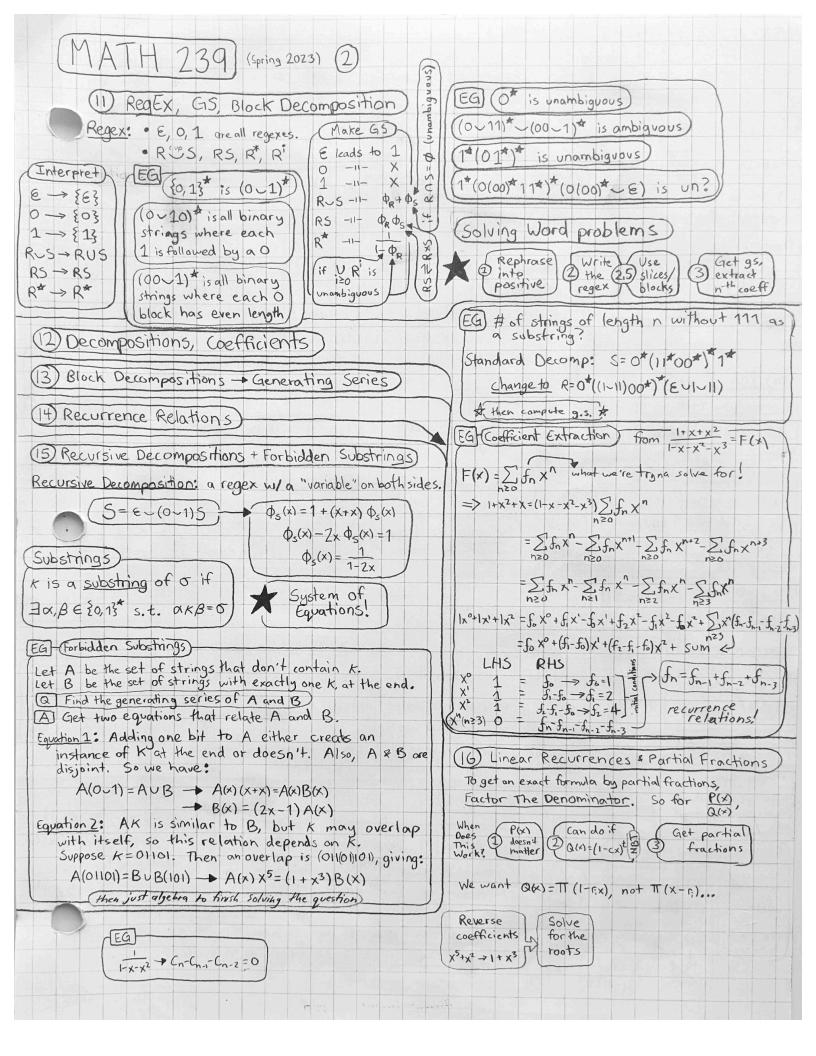
MATH 239 - S23 Introduction to Combinatorics Full Course Notes

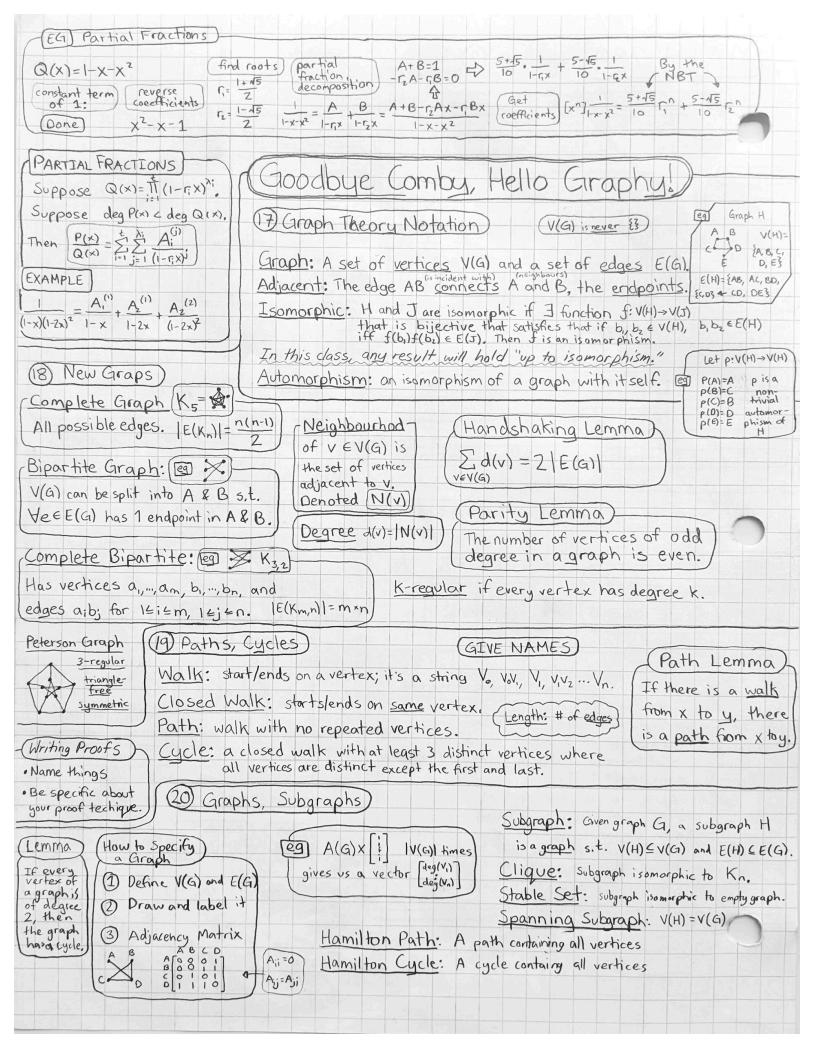
With Prof Logan Crew

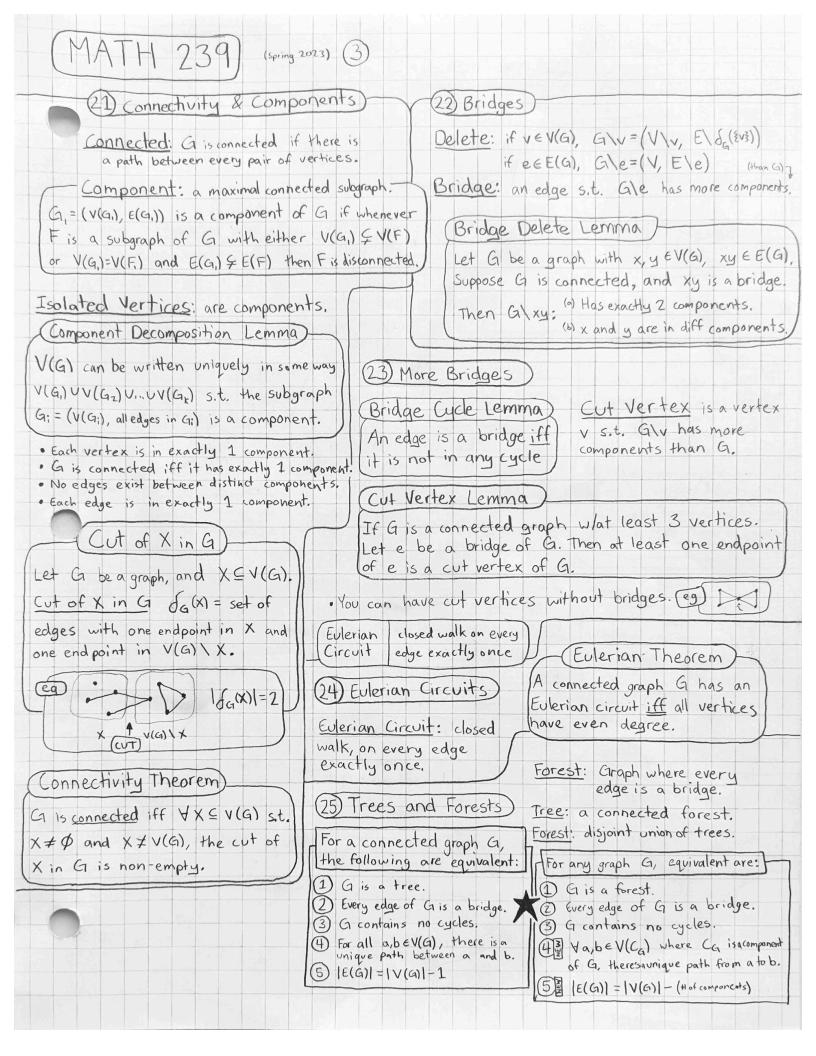
My notes consist of most definitions, and some summaries, methods, and examples. They are not exhaustive.

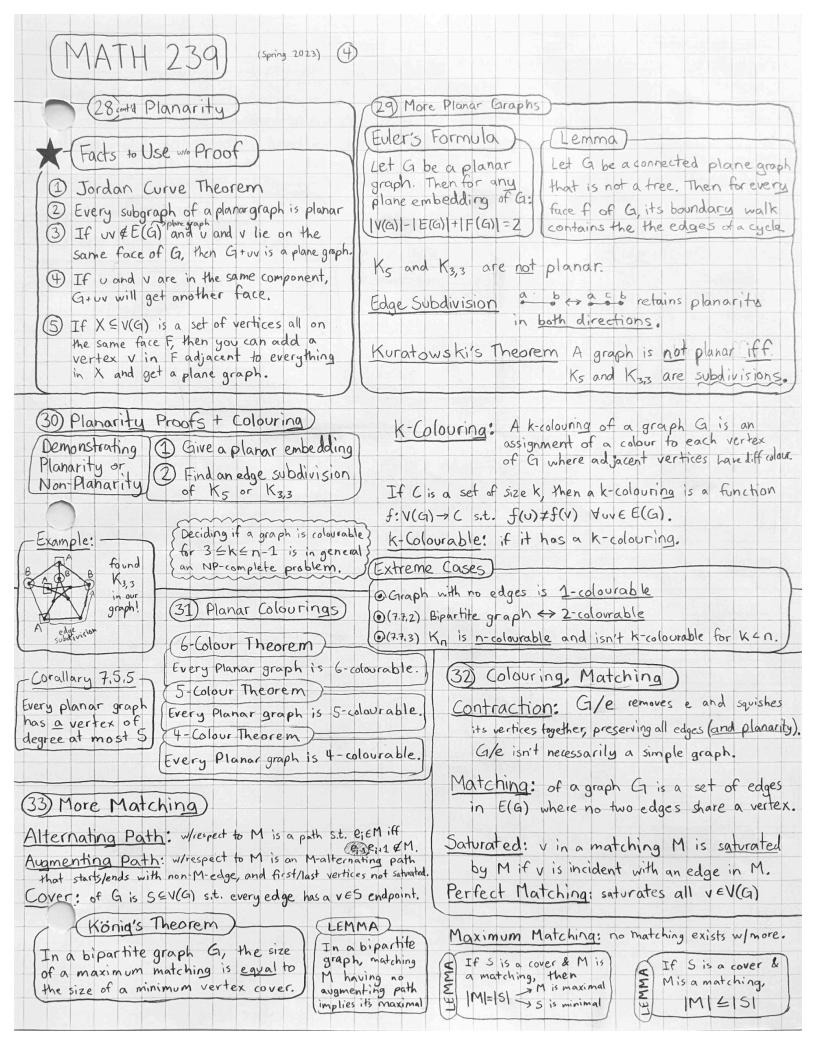
VATH 239 (Spring 2023) M includes 0 (2) Bijections, Proofs)-Definitions Finite sets with a bijection between them Bijection: a map f: A > B that is 2 surjective { Set: collection of distinct objects. have the same size. E Element: object within a set. Injective: f(a,)=f(az) -> a = az = Surjective: YbEB, JaEA / f(a) = b Proof Example) = Subset: all items are in parent set. 151 Cardinality: number of elements in the set. Indicator Variable: value that represents a choice Q: show |P(T) = 21T1 Union: all objects in either set. Tuple: Ordered set. A: Consider the map f: P(T) -> {0,1}|T| 1 Intersection: all objects in both sets. Proof then | {0,13|T1 |= 2 |T1 | 1 Deletion: in first, not in second. Show is Define f, f-1 (1) injective & X Cartesian Product: set of ordered pairs, from each (2) and show Let T= {t, ", tri} ... Bijection | surjective Given SET, f(s)= Sith coor = 0 if tifs} D Empty Set: it's unique. OC any set f(f-(a))=f-(f(a))=a f(S)= {ith coor = 1 if ties} Sizes A: Clearly define your sets; give them names 2 B: Use words in your definitions freely Then f is a bijection ... SUT = | S|+|T|-|SOT| C: Illustrate expected ipputs & outputs To show, we define f': S/T = | SI - | SOT f-1(s)= {if t;=0, don't put s; in ? if t;=1, put s; ins} 3) Combinatorial Proofs, Multisets) S xT = | S | · | T | and show f-1(f(a))=a all subsets = 2 151 - Powerset <u>Permutation</u>: an ordering of some elements. and f(f-1(a))=a List: ordered set (a specific permutation). |k-e| element $|s| = {|S| \choose |K|}$ BINDMIAL COEFFICIE Combinatorial of come up with sets of create the easiest Proof and "just start." bijection you can. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ 3 Define Eg: f(T) = {T if T & Sn-1,k - f: AVB > C 4) Combinatorial Intuitions $\sum_{i=0}^{\infty} \binom{n}{i} = 2^n$ Inclusion/Exclusion: (2) A: If you have f. AUB -> C, show f": C-> A or B specifically $\binom{\binom{n}{t}}{=}\binom{n+t-1}{n}$ ((1)) # of ways to choose n items (t) from [t] with repetition! B: When making sets on same side, make them disjoint. $\sum_{i=1}^{n+1} i = \binom{n+1}{2}$ Multiset: ... of size n with t types is a sequence of non-negative integers m, ..., mt s.t. m, +...+mt=n (5) Power Series (Formal) mm SNEVER evaluates [eg: [X10] 3x 7+2x OG(x)= \(\tilde{\Sigma} \) C_n x^n-[xn]G(x) = coefficient on xn 2 a power series at 2 $OG(x)+H(x)=\sum_{n=0}^{\infty}(c_{n}+d_{n})x^{n}$ $\sum_{n=0}^{\infty}(c_{n}+d_{n})x^{n}$ =[x9] 3/112x $(1+x+x^2+...)(1-x)=1$ 1-x listle Geometric Series =[x9] = 1 OG(X)H(X) = ∑(∑c;dn-i) xn 1 Factor (2) Subtract) = = = [X9] [-(-==x) (Find out if G(x) has inverse) (Generating Function for A) = = = [x9] [(-==x) 1 = con xe con = 1 - (1 - G(x)) = \(\frac{1}{G(x)} \) = \(\frac{1} Weight for W: A -> N= {0,1, ... } $\bigoplus_{A}^{M}(X) = \sum_{\alpha \in A} \chi^{W(\alpha)}$ = 37. (-2)9 If $[x^{\circ}]G(x) = 0$, [XK] Ox(X) = # of objects in then G'(x) isn't well-defined Binomial Theorem EG W:N-N $[x^{k}]\sum_{n=0}^{\infty}(1-G(x))^{n}=\sum_{n=0}^{\infty}[x^{k}](1-G(x))^{n}$ $(x+y)^n = \sum_{k=1}^{\infty} {n \choose k} x^{n-k} y^k$ w(n) = n

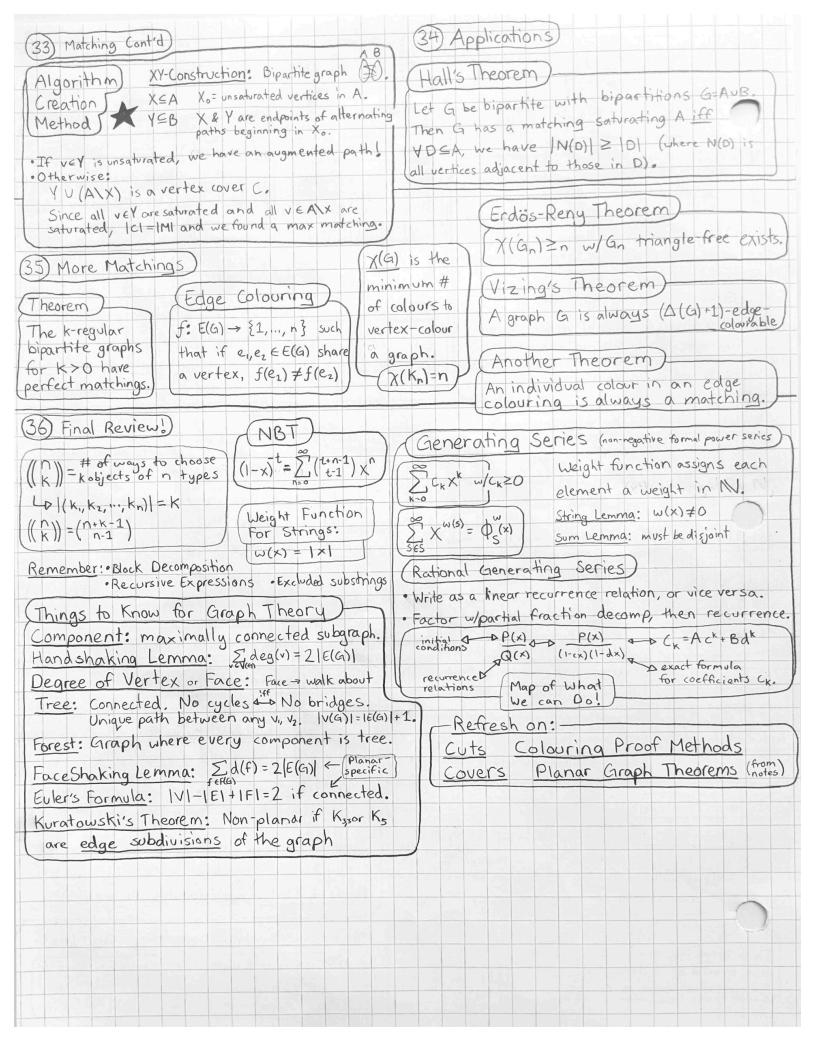












and a red panda

and some happy dogs on a couch

