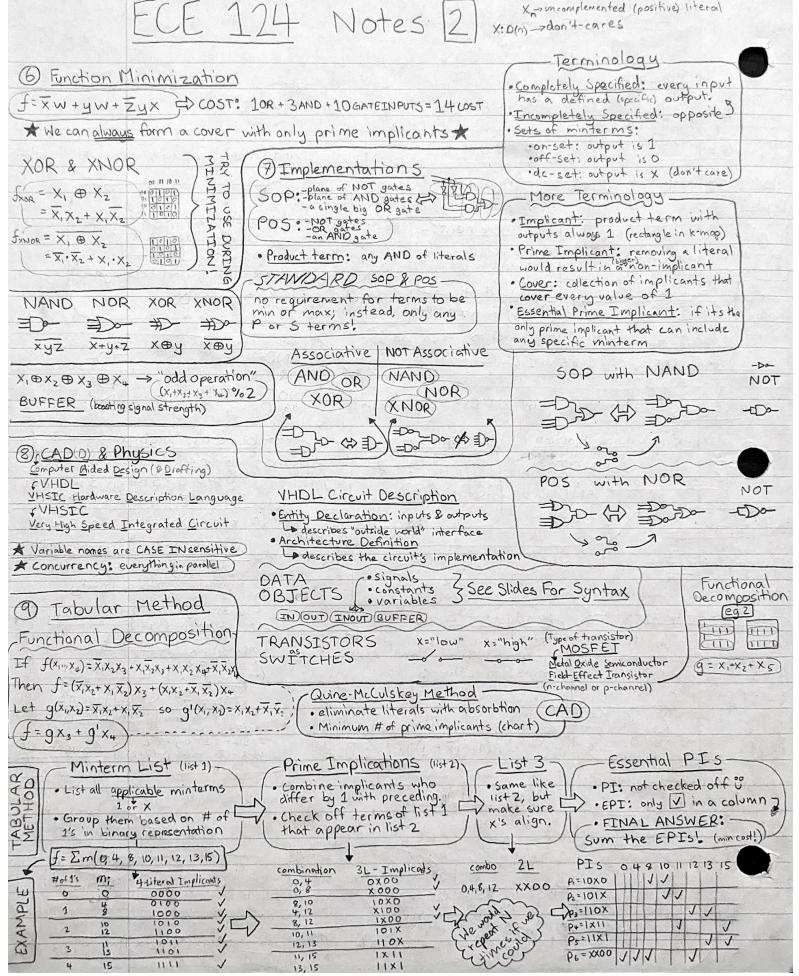
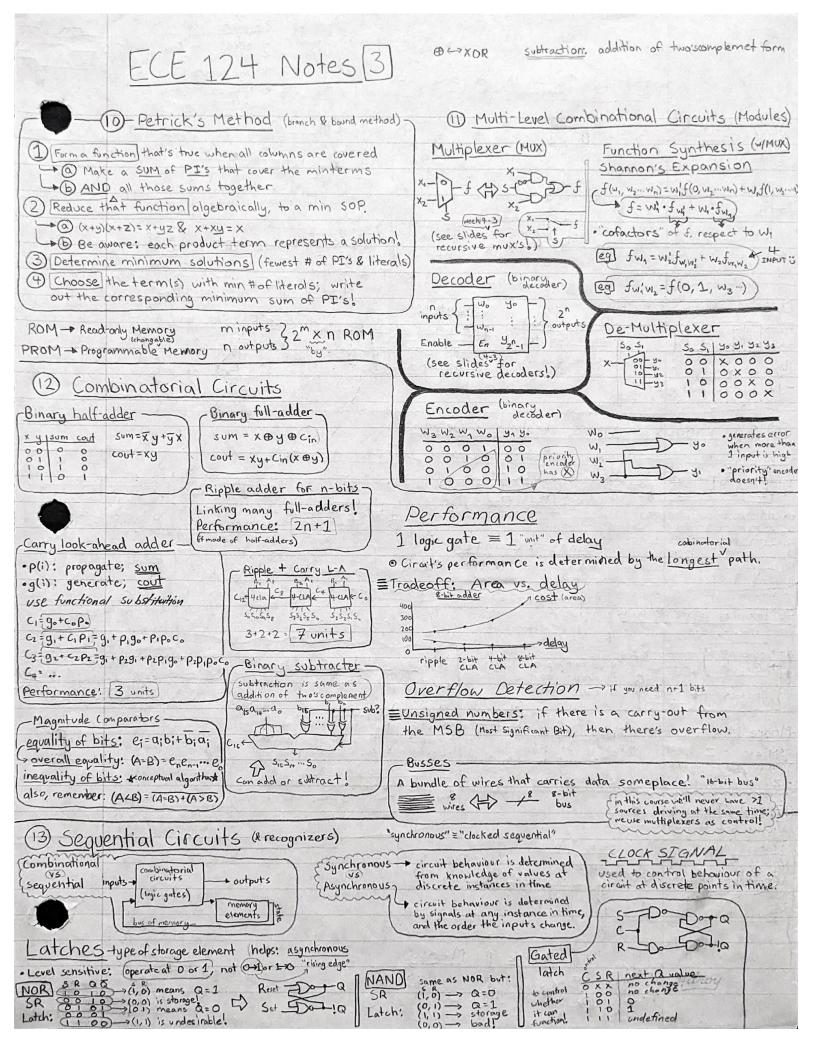
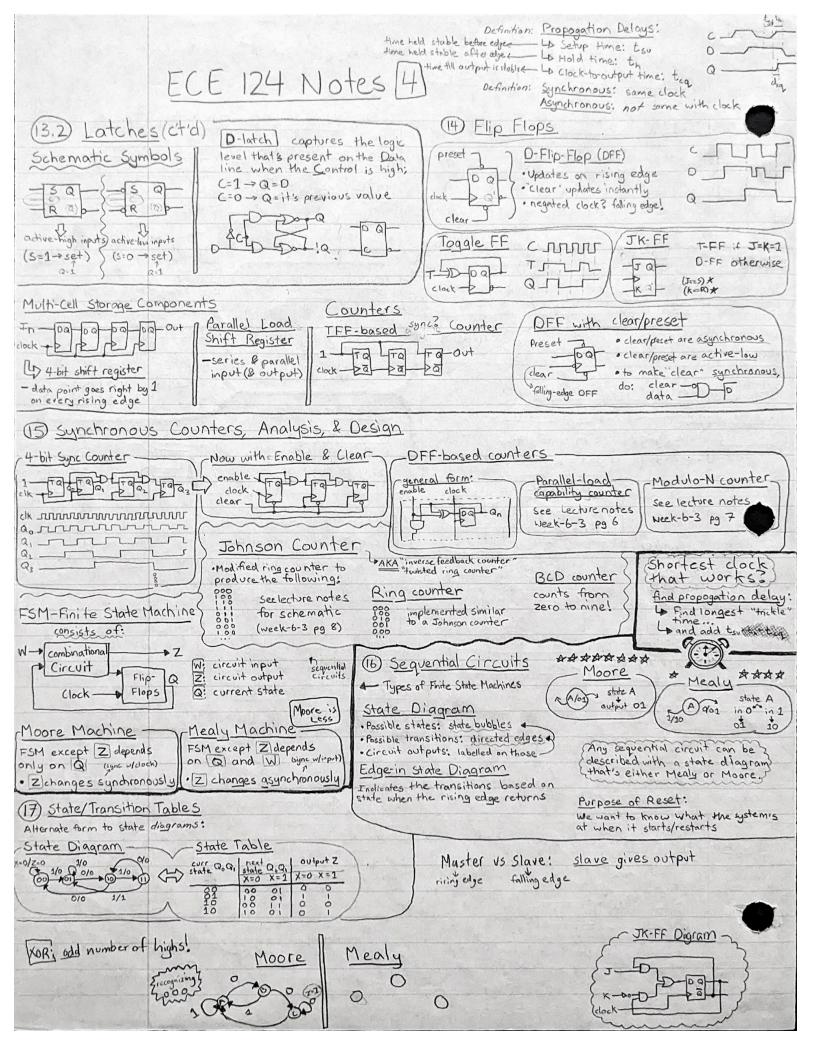
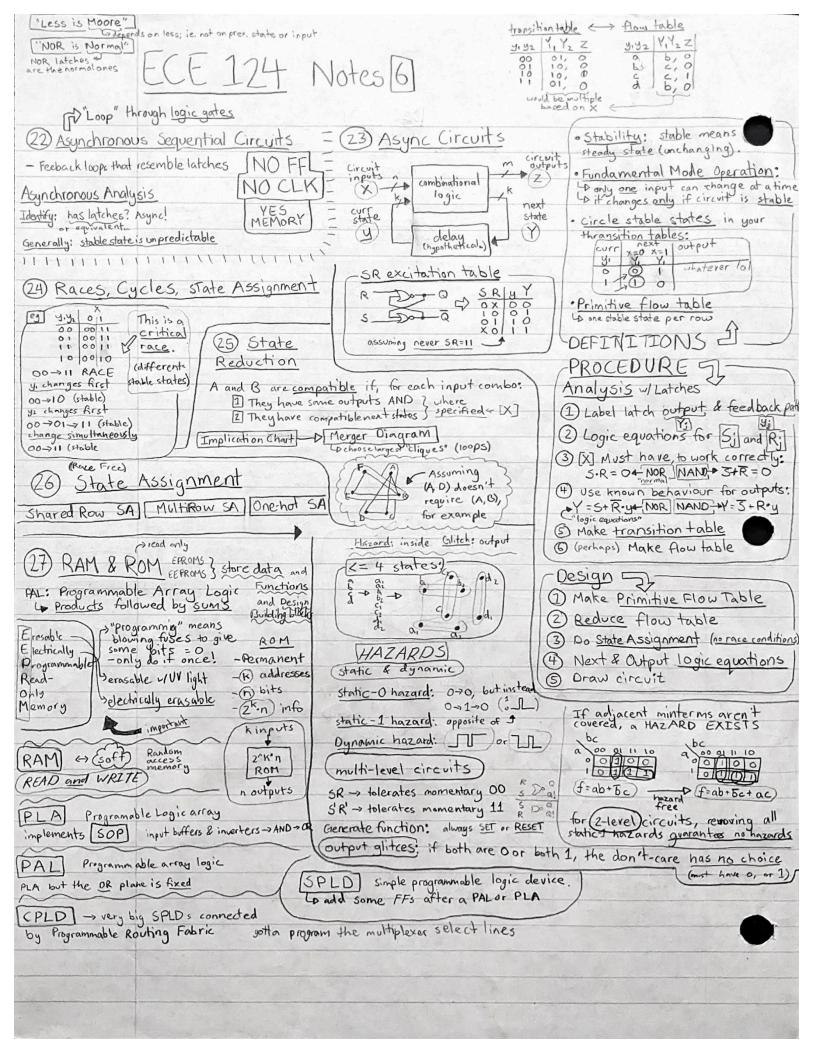
ECE 124 - W22 Digital Circuits and Systems Full Course Notes


With Prof Otman Basir


My notes cover all the course material; at least, everything on the final was on here. Hope they help!


Josiah Plett

* (X+y)(X+Z)=X+yZ* A X+XY=XA ECE 124 Notes [] computer aided design · We'll use CAD & FRGA'S (Field Aggrommable Logic Devices) · Everything's binary 1) Intro Combination Circuits Sequential Circuits 0-minterm 1-max term Dont care about time " Have a sense of time i 2) Analog/Digital, Design, & Number types ·Motherboard: ties a computer's components together. Analog: the input/output IS the number (Physical) Design (yde) Digital: stuff is in BINARY (logical). - Learn what the product requires. -Complement: -Binary (2), Octal (8), Hex (16) - Specifications & initial design + How much you need to add to get to the maximum single digit... - Is the design correct? NOT Bi > Oct: groups of (- Prototype implementation and testing 47 Bi > Hex: groups of (4) Within FOR NEGATIVE NUMBERS - Meets specifications? NO-indone! congrats! Radix R: S. R'S complement: (T'-N) for n=0 (0-0) Another way: Each digit is (r-1) - (digit), then add 1. Name Operators Gates product AND f . f 5 (r-1)'s complement: Just don't add 1 c sum OR 1+5 NOT 5, J' !f.~f -00 3 Switches ~ 5-0 Groups of gates: "Logic Circut" NAND Boolean Algebra L(X) = X is a Logic Function - Venn Diagrams Axioms: AD 0.0=0 01-1=1 00.1=1.0=0 NOT OR 0+0=0 0+1+1=1 0+1=1+0=1 Precidence: AND 8 0 $i \to x = 0 \Rightarrow \overline{x} = 1 \quad \forall x = 1 \Rightarrow \overline{x} = 0$ 1-Variable Theorems: (x=x+1=x+x=x+0=x+x=x OŘ X·y+Z 2.6 D Synthesis (1=x+1=x+x 0=x.x=x.0 row X1 X2 X3 2- or 3-Variable ·Mintern: each variable appears once: 5 1 0 1 - (m5=X1 X2 X3) Minterm Theorems: " x-y=y-x 3 (commutativity x+y=y+x 3 (commutativity x(y-z)=(x-y)-z 7 Associativity ii x+(y+z)=(x+y)+z) >min=max · Maxterm: each variable appears once: 6 | 1 1 0 → (Maxterm Maxterm: each variable appears once: 6 | 1 1 0 → (Maxterm 12 x · (y+z) = x · y + x · 2 x + (y · z) = (x + y) · (x + z) } Oistributivity - Sum-of-Products-(form)-Product-of-Sums-form B X+X+y=x } Absorption "AND" each minterm with its function value, and "OR" "AND" each maxtern with Not its function value, and "AND" " (x+y).(x+y)=x } Combination those together: those together: $\begin{array}{c} (x+y)\cdot(x+y)=x+y\\ \text{is } \overline{x+y}=\overline{x+y}\\ x+y=\overline{x+y}\\ \text{is } \overline{x+y}=\overline{x+y}\\ \text{is } \overline{x+y}=x+y\\ x\cdot(\overline{x}+y)=x+y\\ x\cdot(\overline{x}+y)=x+y\\ x\cdot y+y\cdot z+\overline{x}\cdot z=x+y+\overline{x}\cdot z\\ (x+y)\cdot(y+z)\cdot(\overline{x}+z)=(x+y)\cdot(\overline{x}+z) \end{array} \right\} \begin{array}{c} Consensus\\ Consens\\ Consensus\\ Consensus\\ Consensus\\ Con$ x y f(x, y) minterm The same function as left becomes: mo=Xy Mo=mon 0 0 f(x,y)=M.·I·M.·I·M2·O·M3·T mi=xy Mi=m/r 0 m2=xy M2=m2 1 0 $=M_2=(\overline{x}+y)$ m3=xy M3=m3 $f(x, y) = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$ Bharnaugh Maps -Canonical & Standard Forms:-= xy+xy+xy . Sum of Products . Product of sums Lo <= 5 inputs KMap; alternative to truth table minimizing SOP Representations ×2 0 1 Minimum SOP: X1 X2 f 0 0 1 Mo 1) Sclect rectangles (product terms) with as many 1's as you can (2", nEZ) 0 $f=\overline{x_1} + \overline{x_2}$ (2) Cover all the 1's; it's solid to cover a 1 multiple times Xixio of It de "surround O's Minimizing POS: AND the sontems eq. ort $= \sum_{i=1}^{n} \frac{1}{(X_i + X_2 + X_3)(X_1 + X_3)}$


X-suncomplemented (positive) literal X: D(n) -> don't-cares

ECE 124 Notes 5	
DESIGN IF DEF. these are equal!	
18 Synchronous Circuit Design	
· WHITE THE IDAIC EQUATIONS FOR CITCUIT OUTDUIS (AFF THE VIS) THE STATE OUTPUIS)	
State Reduction tight y The state Assignment problem make the output the correstate: perhaps adding "extra bits" make the output the correstate: perhaps adding "extra bits" make the output the correstate: perhaps adding "extra bits" make the output the correstate: perhaps adding "extra bits" make the output the correstate: perhaps adding "extra bits" make the output the correstate: perhaps adding "extra bits" make the output the correstate: provide adding "extra bits" make the output the correstate: provide adding "extra bits" make the output the correstate: make the output the output the output the correstate: make t	& counters. or logic.
	Hilroy

	ECE 124	Notes	7	Apractices - convert to JK FF (from state diagram) - pidraw circuit out of state table - Decoder, and memory stuff - multiplexer system (w/enable) - Counter system (w/load) - Full Adder system	-merger diagrams -partitioning (sa) -critical races (RF) -recognize a pattern - ASM chart
Field	28) FPGAs -> Implemented with	an LUT		Timing Analysis Totata DI	}
Programmables Gate Arrays	Ka Xa Ka Logic Toothag S	implements any n-input function by configuring LUT bits	FF out p To rec Twycle	buts take time to arrive back as inputs ach in time, our maximum frequenc ≥ T _{clack} + Taota + T _{su} + (T _{clk1} -T _{clk2}) [th out between (FF2)	thout visiting
(inverted clocks make it harder to function) (inverted clocks make it harder to function) SU- cf > time when FF CLKINPUT active CC > CK PIN					
			hold-	df -> data FF time dc-> data PIN time tsu-> su wirt. FF cLK (for FF input) th -> FF hold time tsetup -> PIN su thold -> PIN hold	
					1

its a garbage meme but its kinda on point. you got this :)