CS 456 - S25 - Final Exam Cheat Sheet - Josiah Plett

This cheat sheet has been improved post-exam, for completion and relevancy to exam questions.

Good luck!

Performance Metrics - End-to-End Delay:

d_{trans} = packet size / link rate

d_{prop} = link length / propagation speed (~2×10° m/s)

d_{proc} = node processing time (negligible)

d_{queue} = average queue length / service rate

Loss: fraction of packets dropped

Throughput: rate of successful data delivery end-to-end

TCP vs UDP

TCP: reliable, connection-oriented, with flow and congestion control. Most popular. Header size: **20 bytes.**

UDP: connectionless, unreliable.

Neither guarantees timing, throughput, or security.

HTTP - request-response model

Request: Method, URL, Version, headers, optional body

Methods: GET, POST, HEAD, PUT

Responses: 200 OK; 301 Moved Permanently; 304 Not Modified; 400 Bad Request; 404 Not Found; 505 Version Not Supported.

Non-persistent: each object requires a new TCP connection (2NRTT + sum of file transmission times).

Persistent: reuses one connection (first obj is 2RTT + file trans, next N-1 are RTT + file trans.

Persistentness is specified in the request header.

Web Caches

Average response time = hit-prob·(cache-delay) + miss-prob·(server-delay + queuing-delay).

Queuing-delay scales with fraction of misses

HTTP/2 & HTTP/3

HTTP/2: Decreases delay in multi-object reqs, mitigate head-of-line blocking by breaking objects into chunks.

HTTP/3: adds security and per-object congestion control over UDP.

Sockets - IP address + port.

UDP: no handshake; receiver gets sender from packet.

TCP: Client contacts server, server dedicates socket.

Peer-to-Peer (P2P)

Client Server distro time: $D_s \ge \max\{N \cdot F/U_s, F/d_{min}\}$ P2P distro time: $D_{p2p} \ge \max\{F/U_s, F/d_{min}, N \cdot F/(U_s + \sum u_i)\}$ $d_{min} = best client download time. <math>u_i = client \ i \ upload \ speed$ **BitTorrent** tracks peers, peers prefer those with

most/faster uploads to them, sometimes send to random.

Reliable Data Transfer (RDT)

Stop-and-Wait (RDT 3.0)

Send one packet; wait for ACK (0 or 1). Timeout triggers retransmission. Utilization: $U = d_{trans}/(d_{trans}+RTT)$.

Go-Back-N (pipelined protocol)

Window of N packets; ACK(x) acks up to x; keeps N packets in flight; timeout resends the entire window.

Selective Repeat (pipelined protocol)

Independent ACK per packet; sender retransmits only unACKed packets; receiver buffers ACKs out-of-order.

Subnets & Forwarding

Subnet notation (e.g. w.x.y.z/host). wxyz - host = subnet. Routers forward based on the longest-prefix match. TCP - Transfer Control Protocol

Byte-oriented, cumulative ACKs -> segnum per byte.

RTT Estimation

Exponential Weighted Moving Average: $(\alpha \approx 0.125)$

 $EstRTT_1 = (1-\alpha) \cdot EstRTT_0 + \alpha \cdot SampleRTT$

Deviation of RTT: $(\beta \approx 0.25)$

 $devRTT = (1-\beta) \cdot DevRTT + \beta \cdot |SampleRTT-EstRTT|$

Timeout Interval = EstRTT + 4.DevRTT

TCP Optimizations

Fast Retransmit: retransmit after 3 duplicate ACKs and no timeout; implies segment was lost.

Delayed ACK: wait a bit to combine ACKs, unless out of order then ACK immediately.

Flow Control

Receiver advertises a window size *rwnd* and shares it in its ACKs, sender limits in-flight data accordingly.

Three-way Handshake: SYN, SYNACK, ACK

Teardown: FIN, FINACK
Congestion Control

AIMD Additive Increase Multiplicative Decrease: +1 on success of full window, /2 on triple dup ACK, set to 1 on timeout (TCP value) then slow start threshold = wndw/2.

SS Slow Start: Double cwnd till loss or cwnd > ssthresh **TCP Cubic:** cwnd growth based on cube of distance from curr window size before loss event

Delay-based: measured throughput near uncongested throughput? Increase linearly, otherwise decrease.

ECN Explicit Congestion Notification: routers mark packets with ECN flag on the ACK to receiver

QUIC - Quick UDP Internet Connection

TCP-style congestion control/reliability at App layer over UDP with 1-RTT connection establishment w/built-in security. Avoids head-of-line blocking with multiple App-level streams multiplexed.

Routing Algorithms

Link State

Each node floods link-cost information. Nodes compute shortest paths with Dijkstra's algorithm.

Distance Vector

Each node shares its distance estimates to all destinations with neighbors. Neighbors update via Bellman-Ford. Problems: link failure -> count-to-infinity, malicious node -> black hole.

IP Datagrams

IPv4: Source + Dest, Time To Live (8 bits, prev. inf. loop). IPv6: Source + Dest (128 bits), priority, flow label. "Tunneling:" Wrap IPv6 in IPv4 if IPv6 isn't supported.

Network Address Translation (NAT)

Allows multiple devices in a private LAN to share one public/WAN IP. The NAT router keeps a translation table: (public IP:port) ↔ (private IP:port) for active connections.

- WAN IP: Public address visible on the Internet.
- LAN IP: Private address used inside local network.

without special configuration, an external host **can't initiate** a direct connection to a NATed host because the NAT blocks unsolicited inbound traffic – it has no table entry until a local device sends something first.

Ethernet (Data Link Layer)

Shared (old) or switched (modern) physical medium. Frames carry source/destination MAC, type, and payload. **Media Access Control (MAC)**: 48-bit hardware address unique to each network interface (ie. internet connector).

Interior / Inter-Domain Routing

Autonomous Systems (AS) run their own *interior* routing; *inter-domain* routing manages paths between ASes.

Open Shortest Path First (OSPF)

Link-state protocol used *inside* an AS. Link costs are set by the network administrator.

Border Gateway Protocol (BGP)

App-layer protocol for inter-AS routing over TCP via advertised paths. Advertisement contains: destination prefix, AS-PATH (current total path), NEXT-HOP.

eBGP: between ASes.

iBGP: propagate reachability internally in an AS. Route selection: 1) local policy, 2) shortest AS-PATH, 3) nearest NEXT-HOP (hot-potato), 4) other tie-breakers. "Hot-potato" routing minimizes cost to exit the AS. BGP advertisements usually only forwarded if beneficial (eg. financial incentive).

End-to-End Argument

The network's role is only packet transfer; reliability and other services belong at the endpoints (sender/receiver). Hence IP is *the* single network-layer protocol.

Middleboxes

Routers that do extra stuff (firewalling, NAT, caching).

Internet Control Message Protocol (ICMP)

Encapsulated in IP, carries error and control messages for network-level (e.g., "TTL expired," "Unreachable host").

Software-Defined Networking (SDN)

Centralized controller codes routing rules for each node. Separates control from forwarding.

Address Resolution Protocol (ARP)

Broadcasts a request across the LAN for a target IP's MAC – sent to ff:ff:ff:ff:ff:ff which is all 1s; "broadcast MAC address" – that IP replies with its MAC.

Local Area Network (LAN): local, privately managed.

Link-Layer Switch

Self-learning device that forwards frames between devices in a LAN, based on a MAC-to-port table. If the destination is unknown, it broadcasts. Dedicated host connections prevent collisions.

Virtual LANs (VLANs)

Port-based VLANs group ports into logical LANs. Trunk ports carry traffic for multiple VLANs, tagging with VLAN IDs (in Ethernet header); isolation and organization.

Multiple Access Protocols (Data Layer)

Coordinate multiple senders on one medium.

Channel Partitioning: TDMA (time slots), FDMA (frequency bands).

Carrier Sense Multiple Access (CSMA):

- Random Access: just plain listen before sending.
 (eg. Aloha & Slotted Aloha →)
- CSMA/CD: detect collisions, abort and back off exponentially (k ∈ [0,2^m-1]).
- CSMA/CA: wireless variant avoid collisions by using ACKs, send if idle, back off if busy/no-ACK.
- **Reservations:** RTS/CTS (Request to Send, Clear to Send) handshake to reserve the medium.

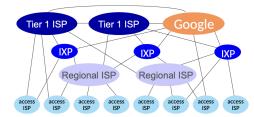
Dynamic Host Configuration Protocol (DHCP)

Hosts broadcast DHCPDISCOVER; servers reply DHCPOFFER. The host requests with DHCPREQUEST; server confirms via DHCPACK. Renewal only requires REQUEST and ACK. It is in *App Layer*.

DHCP also supplies subnet mask, gateway, DNS server.

Domain Name System (DNS)

Hierarchical name. IP mapping: Root → TLD → authoritative servers → hosts. Local DNS resolvers from ISP cache queries and perform iterative lookups.

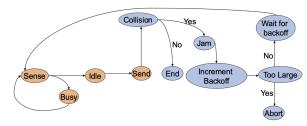

Iterative: client→local, local→root, local→tld, local→etc **Recursive:** client→root, root→tld, root→company, etc. **Resource Records requests:** Name, Value, Type, TTL.

- A: hostname → IPv4 address
- CNAME: alias → canonical name
- NS: domain → authoritative name server
- **MX:** domain → mail exchange server

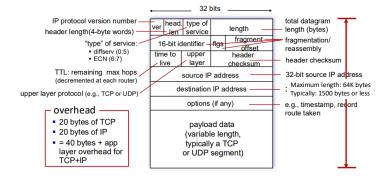
Messages: request and reply share the same format. Multiple questions and answers per message; transaction IDs match them.

Internet Service Provider (ISP)

Company that provides Internet access. Connects customer networks (LANs) to internet, assigns IPs, might offer DNS, email, and hosting services.


Aloha (pre-CSMA wireless random access)

 $p(1 - p)^{2(N-1)}$... Max efficiency possible: f(p) = 1/(2e) = 0.18


Slotted Aloha

Probability *any* node has success = Np(1-p)^{N-1} Max efficiency: p that maximizes above. Usually, p = 1/N For many nodes, take N $\rightarrow \infty$; f(p) = 1/e = 0.37

CSMA/CD

IPv4 Datagram Format

Remaining things you should know:

- Error Correction: How 2D error correction works.
- Error Detection: CRC encoding + decoding.
- **Summary:** Write the full steps from connecting your PC to a new LAN to reading a webpage.