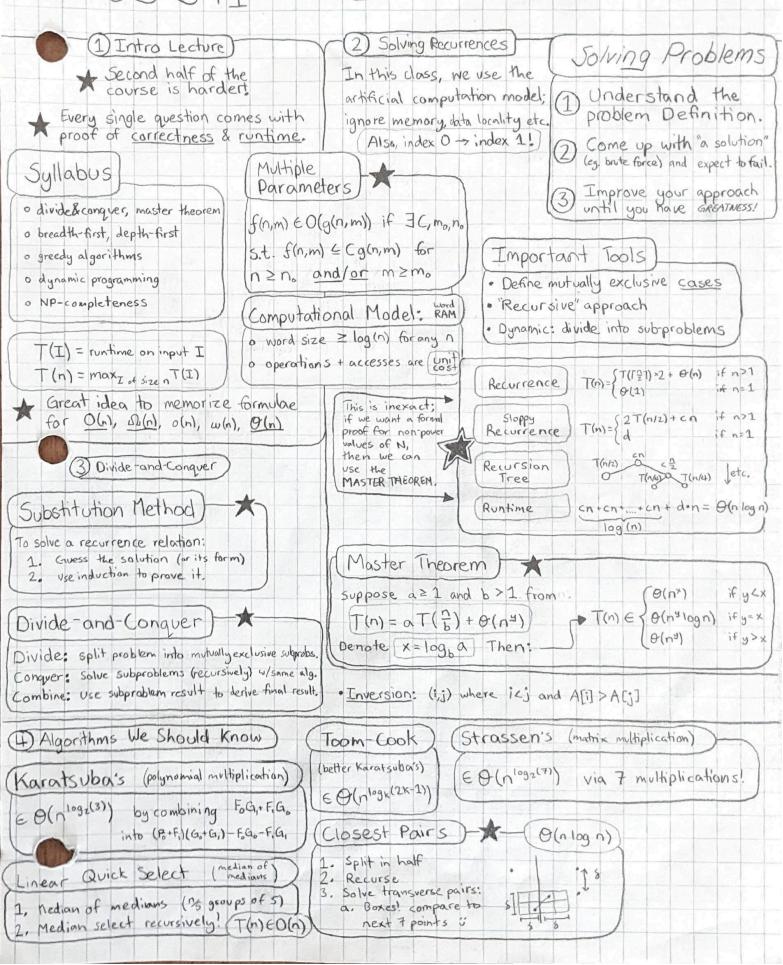
CS 341 - W24 Algorithms Full Course Notes

With Prof Armin Jamshidpey

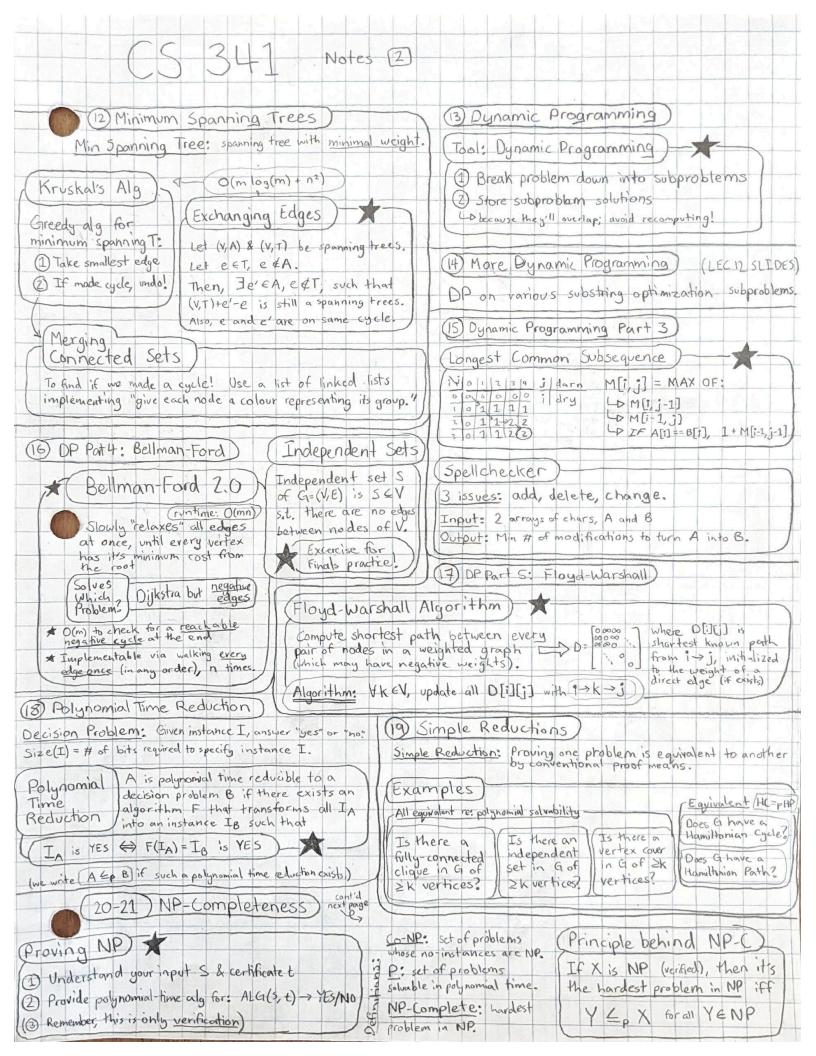
I took in-class notes and mostly avoided writing examples. I hope this high-level summary helps!

Josiah Plett

CS 341 Notes 1



(5) Breadth First search)	(67) Depth First Search	(8) Directed Graphs)
Undirected Graph)*	OFS Algorithm)	DAG: directed, acyclic graph.
Def: G=(V, E) with IVI=n, IEI=m Data Structures:	idea: as deep as possible, then backtrack structure: use a stack (recursion/queue) shortest paths? no	(1) Connectedness
-Adjacency list: A[1n] s.t. A[v] is a linked list of v-connected edges. <u>Size:</u> O(n+m) <u>Edge exists</u> : w(1)	untime: O(n+m) ancestor/descendant: "0-0-0 visancestor of v; v is descendat of u	(Testing Acyclicity)
-Adjacency matrix: binary matrix of size n×n w/M(v,w]=1 iff {v,w}zeE. <u>Size:</u> O(n ²) <u>Edge exists</u> : O(1)	Back edge: edge in G that's not a tree edge in our DFS tree.	G has a cycle IFF there is a back edge in its DFS forest.
You should know these from Math239:) path: V VK s.t. YEV:, VI+13 EE.	<u>Cut vertex</u> : vertex v in connected G s.t. G/V is disconnected.	(Topological Ordering) Suppose G=(V,E) is a DAG
cycle: path V, VK, V, with K=3 and vertices.	Cut Vertex Claim *	A topological order is an ordering (L) of V s.t. Ve=(V, ws EE, we have V c.W.
tree: connected graph with no cycles. <u>rooted tree</u> : tree with special vertex voot: <u>subgraph</u> : strictly inside G' ; jakow	iff it has a child w with m m(w) ≥ level[v] (m->descendent)) heighbour	(Strong Connectivity)
connected component: maximal connected	A Directed Graph is a DAG of disjoint strongly	Testing Explore twice from Strong SeV, once with Connectivity edges reverse
Definition: subgraph made of: - all w s.t. parent[w] \$\vert NIL - all \$\vert w, parent[w]\$, for w as above	Kosaraju's Alg	(Strongly Connected Component - Subgraph of G - which is strongly connected
10 Greedy Algorithms	For a directed graph G, the transpose graph GT=(V, ET) is the graph with edges reversed.	-nat contained in another strongly connected subgraph
(Hamiltonian Paths) ** Simple path that visits every vertex exactly once.	Compute strongly connected components; scc(G):	Gireedy Algorithm Correctness
for undirected G: np-complete for directed G: O(n + m)	1 run DFS on G, record finish times.	Treedy Ala Stays Ahead Define an optimal outcome
Greedy Paradigm) (Exch	ange Argument) *	and a greedy outcome. (2) Prove the greedy outcome always returns an equal or better result than optimal.
J o Interval colouring	ally: prove any swap between the cannot create a more optimal solution	4 induction la contradiction
	min(level[w]), where $\exists \{v, w\} \in E$	
(V) =	min(a(w)), where w descendant of v	



(20-22) NP-Completeness	Proving NP-Completeness)	(23-24) NPC Examples
NP-Complete Problem Bank)	Given: Decision problem X	(Perfect 30 Matchings)
• 3 SAT, SAT ((xvyvz)) (xvyvz) • Independent set [of size K]	Drove X is NP Lo aire polynomial-time resification.	Enput: 3 disjoint sets X, Y, Z of size n and a family
· Vertex Eover, Clique [of size k] · Hamitonian Cycle & Path (directed)	(2) Choose Q from NPC	Decision: is there a perfect matching, which is a full,
 Travelling Salesman Subset sum (Zia; = k from array) 	(3) Show Q reduces to X (QEpX) Lo Given I Q, gcherate IX. (Munania)	disjoint-nodes cover? Proof idea: make fidget
· Binary Knapsack (item; weight)	instance, so is IX, and same for no-instances.	spinners? My takeaway is: construct mini-tools that
NP-Completeness Examples	(or, YES IFF YES OF MA :FF MA)	translate a subproblem of the chosen NPC problem into a subproblem of whet
(Circuit-SAT)	Directed Kamiltonian)	youare trying to prove
Input: DAG with labelled vertices. Decision: choice of booleans X; that a	What to reduce to: 2-SAT	NOTE
Proof: Look, every problem	n in the -row of nodes for each va	
De world can be built using with labelled verices! Since	e every it smartly i	innect proofs for the final. (I only include them for inspiration)
problem reduces to it, it's n	JP-Complete,	- woning include them for inspilotion)

 $m{ au}$ us at the front of class holding numbers for armin's demonstrations $m{ au}$