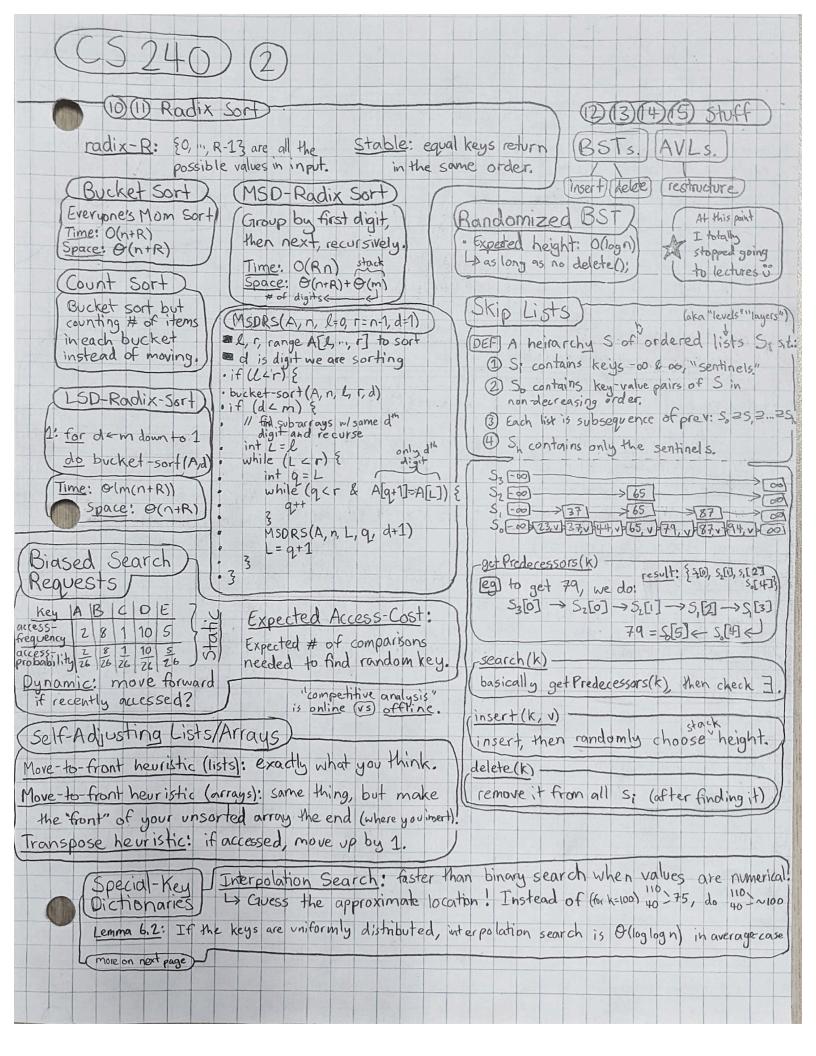
CS 240 - S23 Data Structures and Data Management Full Course Notes


Written from Lecture Slides

I wrote notes in class before midterms, and used lecture slides afterwards. Hope these help a little!

Josiah Plett

$ \begin{array}{c} () \begin{array}{c} () \\ ($		unspecified base: 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(S 2110 6 2022 MC 2021) (7	
Setting: given numbers out them in order. Structured search: given took an with keys word, by key, astructured search: given took stard, by key, instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: algorithm. Mat vas stretting carret answer: (on time: the number of computing thes. (a) the size of the input (we size tB) (b) Build 2: ignore constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the offic of educed too. (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (c)	() 240 Spring 2023 MC 2034 (2	
Setting: given numbers out them in order. Structured search: given took an with keys word, by key, astructured search: given took stard, by key, instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: algorithm. Mat vas stretting carret answer: (on time: the number of computing thes. (a) the size of the input (we size tB) (b) Build 2: ignore constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the offic of educed too. (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (c)		
Setting: given numbers out them in order. Structured search: given took an with keys word, by key, astructured search: given took stard, by key, instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: one particular input to the problem. Signifium: step by step process to model input to recursive: algorithm. A study search by string. Instance: algorithm. Mat vas stretting carret answer: (on time: the number of computing thes. (a) the size of the input (we size tB) (b) Build 2: ignore constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the number bound. (c) Availing space the constant fichs in the offic of educed too. (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (finite clg(n)) for all n 2 n. (c) Constant field for ed(n); there exists (c) Co and n, > O st. (c)	(1) Initial Definitions + Overview)	(2) Asymptotic Analysis)
$ \begin{array}{c} \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \hline \\$		Algorithms will be presented using pseudocode }
algorithm: step by step process to mod input a recursive: algorithm that uses itself. and some presents solving: Anskes in Anke time, returning correct answer can time: the number of compling steps. If the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections of the provide size [1]) was cases constant factors in the runthing bound. Transfluctures: f(n) = 0(n(n)) \rightarrow f(n) \in 0(h(n)) Transfluctures: f(n) = 0(n(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow 0(h(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow	or sorting: given numbers put them in order.	land ghalyzed using order notation.
algorithm: step by step process to mod input a recursive: algorithm that uses itself. and some presents solving: Anskes in Anke time, returning correct answer can time: the number of compling steps. If the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections of the provide size [1]) was cases constant factors in the runthing bound. Transfluctures: f(n) = 0(n(n)) \rightarrow f(n) \in 0(h(n)) Transfluctures: f(n) = 0(n(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow 0(h(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow	E 5 structured search: given data with keys, search by key.	·For a problem II, we can have several algorithms.
algorithm: step by step process to mod input a recursive: algorithm that uses itself. and some presents solving: Anskes in Anke time, returning correct answer can time: the number of compling steps. If the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrects and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections and efficiency of A. (the analysis) is the size of the input (use size [1]) was cases corrections of the provide size [1]) was cases constant factors in the runthing bound. Transfluctures: f(n) = 0(n(n)) \rightarrow f(n) \in 0(h(n)) Transfluctures: f(n) = 0(n(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow 0(h(n)) \rightarrow 0(h(n) \rightarrow 0(h(n)) \rightarrow	of instructured search: given text search by string.	· For an algorithm A solving 17, several programs.
algorithm: shep-by-shep process to mod input * recursive: algorithm that vices itself. sobing: finishes in faite time, returning correct answer run time: the unput over streets. In the size of the input (use size [I]) warst case: even for worst passible big O: ignore constant factors in the number of company steps. In the size of the input (use size [I]) warst case: even for worst passible big O: ignore constant factors in the number of company steps. In the size of the input (use size [I]) warst case: even for worst passible big O: ignore constant factors in the number of company steps. In the size of the input (use size [I]) warst case: even for worst passible big O: ignore constant factors in the number of company steps. Incarditivity: fine O (dm) n g(n) e O(h(n) → fine e O(h(n)) Transitivity: fine D (dm) n g(n) e O(h(n)) → fine e O(h(n)) Maximums: f(n) ± g(n) ∈ O(max ± fin), g(n) ±) (if the so gnore) For all n ≥ 0, st. [f(n) ± (l]	c'l' instance: one particular input to the problem.	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		
salving: finishes in finite three, returning correct answer. cun time: the number of computing deps. g: the size of the input (use size(1)) wordt case: even for wordt possible big Q: ignore constant fichrs in the number bound. (3) Algebra, Techniques Transitivity: fine D(m) A g(m) c O(n(m) + fine O(n(m)) Maximums: fine D(m) A g(m) c O(n(m)) (if they g minor Maximums: fine D(m) A g(m) c O(n(m)) (if they g minor (2) Algebra, Techniques) (3) Algebra, Techniques (4) Algebra, Techniques (4) Algebra, Techniques (5) Algebra, Techniques (5) Algebra, Techniques (5) Algebra, Techniques (5) Algebra, Techniques (6) Algebra, Techniques (7) Algebra, Techniq	recursive: algorithm that uses itself. aspecific indenentation	
n: the size of the input (use size(I)) wast case: even for worst possible big Q: ignore constant fictors in the runtime bound 3) Algebra, Techniques Transitivity: fine e Q(m) A g(m) e O(h(m) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e O(h(m)) Maximums: f(m) + g(m) e O(h(m)) \rightarrow f(m) e		3 If acceptable, implement A. (write program)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	run time: the number of computing steps.	
$\begin{array}{c} \text{ward case: even for worst possible}\\ \text{big Q: ignore constant fichrs in the runtime bound}\\ \hline \\ \hline$		5) (1) Running time - of A # of primitive operations
big Q: ignare constant factors in the number bound. 3) Algebra, Techniques Transitivity: f(n) $\in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n) \rightarrow f(n) \in O(h(n))$ Maximums: f(n) $\pm g(n) \in O(h(n) \rightarrow f(n) \in O(g(n)))$ Maximums: f(n) $\pm g(n) \in O(h(n) \rightarrow f(n) \in O(g(n)))$ Maximums: f(n) $\pm g(n) \in O(h(n) \rightarrow f(n) \in O(g(n)))$ Maximums: f(n) $\pm g(n) \in O(h(n) \rightarrow f(n) \in O(g(n)))$ Maximums: f(n) $\pm g(n) \oplus g(n) \oplus G(n)$ Limit Suppose f(n) $\pm g(n) \oplus G(n)$ Maximum $\pm g(n) \oplus G(g(n))$, then growth rate of f(n) $\pm g(n)$ are game? Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Maximum $\pm g(n) \oplus G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n) \oplus G(g(n)))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n))$ Miggon $\pm G(g(n))$, then growth rate of f(n) $\pm g(g(n))$ Miggon		3 (2) Auxiliary space (B) Growth rate (174:3)
$ \begin{array}{c} \hline \begin{array}{c} \hline \hline \\ $	big O: ignore constant factors in the runtime bound	\$13 Size (Inm) = 2 (C) idealized computer
$\begin{array}{c} \text{Transfully}; & \text{fin} \in O(4n), g(n) \in O(4n), \rightarrow f(n) \in O(4n), \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)\}) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) + g(n) \in O(4n), g(n)) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) = O(4n), g(n)) & (x \text{ fin} > g(n)) & (x \text{ fin} > g(n)) \\ \text{Maximums}; & f(n) = O(4n), g(n)) & (x \text{ fin} > g(n)) & (x $		Order Notation DRAM-> constant time
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	(3) Algebra, lechniques)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$f(n) \in O(g(n))$ if there exists
Limit Limit Limit Limit Suppose f(m) > 0 & g(m)>0, non, Aven f(m $\in O(n^4)$. Since Assume L = non g(m) = non, f(m) = 0 (non, f(m)) = 0 (non, f(m)) = 0 = 0 (non, f(m))		$c > 0$ and $n > 0$ s.t. $ f(n) \leq c g(n) $
Limit Limit Limit Limit Suppose f(m) > 0 & g(m)>0, non, Aven f(m $\in O(n^4)$. Since Assume L = non g(m) = non, f(m) = 0 (non, f(m)) = 0 (non, f(m)) = 0 = 0 (non, f(m))	Techniques Polynomials)	for all $n \ge n_0$.
Suppose f(n)>0 & g(n)>0, non. Assume $L = \frac{him}{n \times \omega} \frac{f(n)}{g(n)} exists.$ Then: $\int o(g(n)) \text{ if } L=0$ f(n) $\in \int O(g(n)) \text{ if } L=0$ f(n) $\in \int O(g(n)) \text{ if } L=0$ f(n) $\in O(g(n)) \text{ if } O(2L/\omega)$ $f(n) \in O(g(n)) \text{ if } O(2L/\omega)$ $f(n) \in O(g(n)) \text{ if } O(2L/\omega)$ $OIT f(n) \in O(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ $OIT f(n) \in o(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ $OIT f(n) \in o(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ $OIT f(n) \in o(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ $OIT f(n) \in O(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ $OIT f(n) \in O(g(n)), \text{ then growth rate of f(n) is g(n) are [same].}$ O(1) - Constant. O(1) - Constant. O(1) - Constant. O(n) - Constan	If this paignored of acage 0.20,	(1) Build gout of nz? → ## €? → # € g(n)
Assume $L = \frac{h}{h} \frac{f(m)}{g(m)} \frac{f(m)}{g(m)} exists.$ Then: (o(g(n))) if $L=0f(m) \in \left(\frac{O(g(n))}{O(g(m))}\right) if O(L(z) = 0f(m) \in O(g(m)) if O(L(z) = 0O(f(m)) = O(f(m))$ if $O(L(z) = 0O(f(m)) = O(f(m))$ if $O(L(z) = 0O(f(m)) = O(f(m))$ if $O(f(m))$ if $O(f(m))$ if $O(f(m))$ if $O(f(m))$ if $O(f(m))O(f(m)) = O(f(m))$, then growth rate of $f(m)$ is greater than $g(m)$. O(f(m)) = O(f(m)), then growth rate of $f(m)$ is greater than $g(m)$. O(f(m)) = O(f(m)), then growth rate of $f(m)$ is greater than $g(m)$. O(f(m)) = O(f(m)). O(f(m)) = O(f(m)) if $O(f(m)) = O(f(m))$ is $O(f(m)) = O(f(m))$. O(f(m)) = O(f(m)) if $O(f(m)) = O(f(m))O(f(m)) = O(f(m))$. O(f(m)) = O(f(m)) if $O(f(m)) = O(f(m))$. O(f(f(m))) = O(f(m)). O(f(f(m))) = O(f(m)) if $O(f(m)) = O(f(m))$. O(f(f(m))) = O(f(m)). O(f(f(m))) = O(f(m		
Assume $L = \frac{n}{n \log n} \frac{d(n)}{d(n)}$ if $L = 0$ Then: $\left(o(g(n)) if L = 0$ $f(n) \in \left(\frac{\Theta(g(n))}{\Theta(g(n))} if 0 < L < rowth Rates (g(n)) if 0 < Retation S 0 < rowth Rates (g(n)) f(n) 0 < Retation S 0 < rowth Rates (g(n)) if 0 < Retation S 0 < rowth Rates (g(n)) f(n) 0 < Retation S 0 < rowth Rates (g(n)) f(n) 0 < Retation S 0 < rowth Rates (g(n)) f(n) 0 < Retation S 0 < rowth Rates (g(n)) 0 0 < Retation S 0 < rowth Rates (g(n)) 0 0 < Retation S 0 < rowth Rates (g(n)) 0 0 0 < Retation S 0 < rowth Rates (g(n)) 0 0 0 < Retation S 0 < rowth Rates (g(n)) 0 0 0 0 < rowth Rates (g(n)) 0 0 0 0 < rowth Rates (g(n)) 0 0 0 0 0$	Suppose f(n)>0 & g(n)>0, n2no, Sine	3 Conclude f=#= g(n) for n=?
$ \begin{array}{c} \begin{array}{c} (\log(n)) & \text{if } L=0 \\ f(n) \in \left(\Theta(q(n)) & \text{if } O \leq L \leq n \\ (W(q(n)) & \text{if } L=\infty \end{array} \right) & \text{OIF } f(n) \in O(q(n)), \text{ then growth } nates of f(n) & g(n) \text{ ore } (Same) \\ \hline (W(q(n)) & \text{if } L=\infty \end{array} \right) & \text{OIF } f(n) \in O(q(n)), \text{ then growth } nates of f(n) & g(n) \text{ ore } (Same) \\ \hline (O & \text{If } f(n) \in o(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ ore } (Same) \\ \hline (O & \text{If } f(n) \in o(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ ore } (Same) \\ \hline (O & \text{If } f(n) \in w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) \in w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) \in w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) \in w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) \in w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) & g(n) \text{ are } (Same) \\ \hline (O & \text{If } f(n) = w(q(n)), \text{ then growth rate of } f(n) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } f(n)) \ (O & \text{If } f(n)) \ (O & \text{If } f(n) \ (O & \text{If } f(n)) \ (O & \text{If } $	Assume $L = \frac{lim}{n \to \infty} \frac{t(n)}{g(n)}$ exists. Just use first principles I guess.	(O, - Notation) (symphic lower bound)
$\begin{array}{c} (u(g(n)) \text{if } L = \infty \\ (u(g(n)) $		
$ \begin{array}{c} (1) = (1) + (1) $		$f(n) \in \Omega_{2}(g(n))$ if there exists
$ \begin{array}{c} \Theta \text{ If } f(n) \in O(g(n)), \text{ then } growth \text{ rate of } f(n) \text{ is } [less than] g(n). \\ \Theta \text{ If } f(n) \in \omega(g(n)), \text{ then } growth \text{ rate } of f(n) \text{ is } greater than] g(n). \\ \Theta(1) = \text{ constant } \\ \Theta(1) = \text{ constant } \\ \Theta(1) = \text{ constant } \\ \Theta(n) = \text{ Logarithmic } \\ \\ \Theta(n) = Logarit$		$c>0$ and $n_0 \ge 0$ s.t. $clg(n)1 \le f(n) $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		for all n 2 no.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		Q-Notation (sweethill is
$\begin{array}{c} (1) = \text{Constant} \\ O(\log_n) = \log_a \text{ithmic} \\ O(n) = 0 \\ O(n) = 1 \\ (n \log_n) = 0 $	Relationships	
$\begin{array}{c} \Theta(n) + \text{Lineart} \\ \Theta(n\log n) - \text{Linearithmic} \\ \Theta(n\log n) - \text{Linearithmic} \\ \Theta(n\log n) - \text{Quasi-linear} \\ \Theta(n^2) - \text{Quadratic} \\ \Theta(n^3) - \text{Quadratic} \\ \Theta(n^3) - \text{Cubic} \\ \Theta(2^n) - \text{Exponential} \\ T_A(n) = \max\{T_A(I): \text{Size}(I) = n\} \\ \Theta(2^n) - \text{Exponential} \\ T_A(n)^{\text{s}} = \frac{1}{12I: \text{Size}(I) = n}\} \\ \Theta(2^n) - \text{Exponential} \\ T_A(n)^{\text{s}} = \frac{1}{12I: \text{Size}(I) = n}\} \\ \Theta(2^n) - \text{Exponential} \\ \\ \Theta(2^n) - \text{Exponential} \\ \\ \Theta(2^n) - Exponenti$	G(1) - Constant	$\zeta_1 g(n) \leq f(n) \leq c_2 g(n) $ for all $n \geq n_0$.
$\begin{array}{c} \Theta(n \log^{k} n) - Quasi-tinear \\ \Theta(n^{2}) - Quadratic \\ \Theta(n^{3}) - Cubic \\ \Theta(n^{3}) - Cubic \\ \Theta(2^{n}) - Exponential \\ \hline T_{A}(n)^{Mg} = 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	O(n)-Linear	
$\begin{array}{c} \Theta(n^{2}) - Quadratic \\ \Theta(n^{3}) - Cubic \\ \Theta(n^{3}) - Cubic \\ \Theta(2^{n}) - Exponential \\ T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I) = max \underbrace{\{T_{A}(I): \text{ Size}(I) = n_{3}^{2}\}}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T_{A}(n)^{N_{g}} = \frac{1}{12 \text{ I: } \text{Size}(I) = n_{3}^{2}1} \underbrace{\sum_{i=1}^{N_{exage}} T_{A}(I)}_{\text{Case}} \\ \hline T$	A(h look) Quasi-linear	O-Notation (asymptotically strictly smaller)
$\begin{array}{c} \Theta(2^{n}) = \text{Exponential} \\ \hline T_{A}(n^{Ng} = \frac{1}{12\text{I}: \text{size}(I) = n^{2}_{3}1} \underbrace{\sum_{\{1: \text{size}(I) = n^{2}_{3}\}} \sum_{\{1: \text{size}(I) = n^{2}_{3}\}} T_{A}(I) \\ \hline Relations \\ \hline Merge \text{sort example:} \\ \hline Merge \text{sort example:} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = 1 \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = 1 \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n) = \frac{1}{T(\lfloor\frac{n}{2}\rfloor) + \Theta(n)} \\ \hline T(n)$	O(n2)-Quadratic ((405) T(0)-mxST(T). (2)	if for all c>0, there exists n ≥0]
$\frac{1}{2} \frac{1}{12} $	Alan c til	
$\frac{1}{(n)=T(n/2)+\Theta(1)} = T(n) \in \Theta(\log n)$ $\frac{1}{(n)=2T(n/2)+\Theta(1)} = T(n) \in \Theta(\log n)$ $T(n) = 2T(n/2)+\Theta(1) = T(n) \in \Theta(n)$ $\frac{1}{(n)=2T(n/2)+\Theta(1)} = T(n) \in \Theta(n)$ $\frac{1}{(n)=2T(n/2)+\Theta(1)} = T(n) \in \Theta(n)$ $T(n) = T(n) = T(n) \in \Theta(n)$ $T(n) = T(n) = T(n) \in \Theta(n)$ $T(n) = T(n) \in \Theta(n)$	$T_{A}(n)^{Ng} = \frac{1}{131: Size(D) = 0.31} \sum T_{A}(I) \begin{pmatrix} average \\ case \end{pmatrix}$	
Relations exact recurrence: constants, not orders $T(n) = 2T(n/2) + O(n) - T(n) \in O(n \log n)$ <u>Merge sort example: ABUSE Sloppy recurrence</u> : floor/ceiling removed $T(n) = T(n) + O(n) - O(n) \in O(n)$ $T(n) = \{T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{2} \rfloor) + O(n) \text{ if } n > 1 \}$	(Recurrence)	
$\frac{Merge sort example:}{T(n) = T(n) + O(n)} = \frac{Sloppy recurrence:}{floor/ceiling removed} = T(n) = T(n) + O(n) - o(-(1 - T(n) \in O(n))) = T(n) = T(n) + O(n) - T(n) \in O(n)$		
$T(n) = \{T(\lfloor \frac{1}{2} \rfloor) + T(\lfloor \frac{1}{2} \rfloor) + O(n) \text{ if } n > 1 \}$	Mergesort example: ABUSE Sloppy recurrence: floor/ceiling a	
$(m) = (\rho(1))$ $(m) = 1 (m) = \rho(4m) = T(n) = \rho(4m)$	$T_{(n)} = \{T([\frac{1}{2}]) + T(\lfloor \frac{1}{2} \rfloor) + O(n) \text{ if } n > 1 \}$	$T(n) = 2T(n/4) + O(n) - T(n) \in O(n)$
(oct) if n=1/ 11-/ tor analysis	$ \left[\begin{array}{c} (\Pi) = \left(O(1) \\ c n, if n=1 \right) \\ \left(\Pi = 2 \\ for analysis \right) \end{array} \right] $	$\frac{1}{2} T(n) = T(\sqrt{n}) + O(\sqrt{n}) - T(n) \in O(\sqrt{n})$
$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$		

(4) Cont'd: Priority Queves) (2000)
ADT: describes information and operations (interface) (STACK) (QUEUE) (PRIORITY QUEUE)
realization: specifies data structure and algorithms (· push() (· enqueue() (· insert() + tagged u/ priority
data structure: how information is stored .size() .size() ("priority" AKA "key"
algorithms: how the operations are performed (is Empty () - is Empty() - front() (En 1)
PLIFO (DETEO) (Empty tree height: -1)
(5) Priority Queue Realization
Unsorted Arrays: insert: O(1) (Binary Heap) Passort -> selection(n2) delete Max: O(n) Heap: @ All locals of home are full {Heaps in Arrays
E LIA TOP UTAL REVES OF REAL ARE THE STATE THE STATE THE STATE AND STATE THE STATE AND
PQ-sort > insertion(n2) deletemax: O(1) (2) For any node i, the key of { left > right then top > down }
the parent j S J 21. {Left Child of i is 21+1}
("max-oriented binary heap") (Right Child of i is 21+2) (6) Heapify, Heapsort) Heapheight: O(logh) (Parent of i is Lizz)
reaping Con reapsort have deleteday. Olina D
D tix parent (swap with ast unused. (Pa-sort =>(nlogn) Using nups, we get U(nlogn)
children 10 To sort in literal order.
bottom-to-to, S
F KUNTIME (Avg) Parsort Woihary heaps (Un logn) (Rohdomized Algs)
G can leg
Aug Buntana h
Ening S north Dreak up I heart I simplify
[Thomas and a sumation of the
of size of n IN finance
(T(I, R) is the runtime of a randomized algorithm A for Quick Select
an instance I and the sequence of random choices R. (choose-pivot (A): return index p in A (semi-hard-coded)
Expected Running Time for T) "probability" [partition (A, p): rearrange A and return pivot index is.t.
$T^{exp}(I) = E[T(I,R)] = \sum T(I,R) \cdot P_{F}(R)$ $Pall items left of i are \leq v A \equiv v v \geq v all items right of i are \geq v$
Expected Running Time (for A) (Module 3) (all items right of 1 are 2V Texp(n) := max Texp(T) (Slides 26-35) () () () () () () () () () (
Texp(n) := max Texp(I) (Be primes co 20) I EIn Best Sort in practice
· Randomize the pivot
(PRandomized) (QuickSort) (randomized) While loop, not recursion Stop recursing when n = 10,
(Quick Select Random) (Tworst(n) & Qu(n2)) Run InsertionSort then!
(choose pivot(A): random pivot / (1) E U(n logn) Pass range of indices, not A.
$ Texp(A) \in O(n) \qquad Tavg(n) \in O(n \log n) \qquad Keep explicit stack (no recursion!) $
$T_{(rand)}(n) \in O(n \log n)$

Dictionary 5- end-ofword character.	
for Words stremp(W,, Wz) -> {-1, 0, +13	(Compressed Tries)
	(Like prined trees on)
(Binary Iries)	steroids. Each node stores
(We elements are E= 20,13 Don't store words at end	the lower limit on the
second is true if we attach \$, or all \$ 50000 store as a structure	length of its sub-words."
words are the same length, IF @ Allow Proper Pretixes	
Binary Trie > Ternary Tree Strate becomes binary, holding	
	0 1 0 1
1 (3) Pruned tries)	A R 3 mis
If more traverals won't be needed, just store the	005 0015 7 5 1 005 0015 9 (105) 11013
	00015 2 0
1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0115 0110151
$\{0, 001, 01, 10, 1013 + \frac{10}{53}\}$	
(All operations have runtime O(IWI).	(Hashing Assumptions)
(HASHING) [h(k)=k mod M]	 We know the universe of keys Have hash function U → {0,1,,M-13}
	· Dictionary is in array T [TI=M,]
Direct Addressing: The key K goes directly to the map.	
(If k is known bounded OKKEM, everything is O(1))	Uniform Hashing Assumption:
Lan't be used if: Keysaren't ints .? smith else	Any hash function is equally likely
Hash Collision: when a new key maps to alocation already taken.	Then: $P(h(k)=i) = \frac{2}{M}$
Solving Hash Collisions	(for any k and i.
(D Chaining: each slot is a bucket. Use insorted linked list w/MTF.	Independent hash functions:
La guerran hugh of size is $n = 0$ (lead factor) Theory is still $Q(1)$ but	h_(k) and h_(k) should be
d average bucket size is $\frac{h}{M} = \alpha$ (lead factor). Insert is still $\Theta(1)$ but search and delete are $\Theta(1+\alpha)$. D Re-hashing: when α gets too big, double the hash table size.	independent otherwise, StUpId.
2) Probe Sequencing: Take an extra parameter for probing.	Multiplication Method:
I search & insert are normal but delete needs to not leave holes,	$h(k) = LM \cdot (kA - LkAJ) \int O \leq A \leq 1$
DSo: delete: Smovelater items back mark slot as deleted, not NIL.	
DLinear Probing: h(K, i) = (h(k)+i) mod M	Carter-Wegman's Universal Hashing)
	All keys 29,1,, p-13 for a (by) prime p.)
I address when collided with a second basis function halks & halk)	Choose M <p. a,b,<="" choose="" random="" td=""></p.>
De we need h2(k) = 0, and h2(k) relative prime w/M for all K.	atb, in Keyrange.
$-\Delta h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$	h(k)=((ak+b) mod p) mod M
(4) Cuckoo Hashing: take ho, hr, use To, T2 tables. Item with	ceys collide with probability at most 1.
key k can only be the (ho(k)] or Tr [h1(k)], so we do booting if there's a collision. Rehash everything if too many boots.	
4) load Actor a= n/(1To1+1T,1). 4) for insertion expected runtime to be constant we need 0.4 1/2.	

CS240 3
Range Searches) I = interval (x, x') I = interval (x, x') Have to search each individuality. RangeSearch implementation: Bounding Box: R=[0,2 ^k)×[0,2 ^k), [2]] RangeSearch implementation: RangeSearch implemen
output = of boundary size nodes visited
(Range Tree) (Module (a) (Pattern Matching) (atern) Search tree for X-coordinates that stores a balanced binary search tree for y-coordinates. Each node in the main tree is a point and also another tree, that holds the same children. (Space: O(h logn) (Module (a) (Pattern Matching) (Definitions) (Pattern Matching: find a string in a lot of text. Tom Matching: find a string in a lot of text. The text (haystack) The text (haystack) (haystack) (haystack) (Atern Matching: find a string in a lot of text. The text (haystack) (
(Algorithms) (for pattern matching) (heck: position; osidm, to check at T[1].
Karp-Rabin: Compute fingerprint for each guess. LD if fingerprint different from P's, no need to check. Use DFA to read the letters linearly) LD key insight: update fingerprints in constant time. This allows runtime to just be O(m rn), worst: O(mn).
Boyer-Moore: Betler pattern matching on english. (DReverse order (<u>where</u>)) (2) Bad char jumps (3) Good suffix jumps (2) & 3) are both "nove as far as can"). (3) Good suffix jumps (2) & 3) are both "nove as far as can"). (4) Implement w/a last occurrence array. Example: (5) 12 3 + char p a e r others (12) 12 (1 3) + -1 (13) 12 (1 3) + -1 (13) 12 (1 3) + -1 (14) 12 (1 3) + -1 (15) 12 (1 3) + -1 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 12 (16) 1
3) crood suffix is like "good" character but in groups (no details).

some real aminals lol

these what you gonna look like if you keep not showering during exam season take care of yourself